119 research outputs found

    Higher rates of liana regeneration after canopy fall drives species abundance patterns in central Amazonia

    Full text link
    In tropical rainforest, most vascular plants have some capacity to resprout, and lianas are often effective resprouters after canopy fall. However, the diversity of resprouting responses of liana species and the consequence for plant persistence are poorly understood. We hypothesized that variation in regeneration among liana species causes differences in liana species abundance in tropical rainforest through differential resprouting capacity, such that liana species with higher densities produce more resprouts after canopy falls.We applied a manipulative field experiment investigating the effect of different levels of disturbance on the production of resprouts and adventitious roots in 10 liana species of the tribe Bignonieae (Bignoniaceae) with contrasting abundances in central Amazonia. We selected 15 individuals of each species and assigned the lianas to three distinct conditions: (a) total canopy fall with lianas severely damaged and detached from trees; (b) partial fall of lianas, without visible damage; and (c) intact lianas (control). We tested whether liana species regeneration patterns were related to species density. Liana species density was calculated using previous research on liana species distribution in 30 1‐ha plots systematically distributed in a 6 × 6 km2 grid at the Ducke Reserve.The number of aerial resprouts produced by lianas under the total canopy fall treatment was twice that of plants under lower levels of disturbance, while the production of adventitious roots did not differ among treatments. Liana species showed different intensities of resprouting, and species with higher average densities on the forest landscape had more resprouts after the total canopy fall treatment.Synthesis. Our results shed new light on the factors that influence liana species abundance, highlighting the role of resprouting after canopy fall and its variation among liana species. Resprouting mitigates the negative effects of canopy damage, suggesting that the impact of increased tree fall disturbances over time, which has been attributed to Amazonian forests in the literature, may increase already abundant liana species with effective resprouting capacity. We identify liana species that are more resilient to disturbance and may alter forest dynamics during climatic change.Our results shed new light on the factors that influence liana species abundance, highlighting the role of resprouting after canopy fall and its variation among liana species. Resprouting mitigates the negative effects of canopy damage, suggesting that the impact of increased tree fall disturbances over time, which has been attributed to Amazonian forests in the literature, may increase already abundant liana species with effective resprouting capacity. We identify liana species that are more resilient to disturbance and may alter forest dynamics during climatic change.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155931/1/jec13345_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155931/2/jec13345.pd

    Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests

    Get PDF
    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∌1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs

    Seasonal shifts in isoprenoid emission composition from three hyperdominant tree species in central Amazonia

    Get PDF
    Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species – Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea – across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds

    Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia

    Get PDF
    PublishedJournal Article© 2014, © 2014 Botanical Society of Scotland and Taylor & Francis. Background: Coarse woody debris (CWD) is an essential component in tropical forest ecosystems and its quantity varies widely with forest types. Aims: Relationships among CWD, soil, forest structure and other environmental factors were analysed to understand the drivers of variation in CWD in forests on different soil types across central Amazonia. Methods: To estimate CWD stocks and density of dead wood debris, 75 permanent forest plots of 0.5 ha in size were assessed along a transect that spanned ca. 700 km in undisturbed forests from north of the Rio Negro to south of the Rio Amazonas. Soil physical properties were evaluated by digging 2-m-deep pits and by taking auger samples. Results: Soil physical properties were the best predictors of CWD stocks; 37% of its variation was explained by effective soil depth. CWD stocks had a two-fold variation across a gradient of physical soil constraints (i.e. effective soil depth, anoxia and soil structure). Average biomass per tree was related to physical soil constraints, which, in turn, had a strong relationship with local CWD stocks. Conclusions: Soil physical properties appear to control average biomass per tree (and through this affect forest structure and dynamics), which, in turn, is correlated with CWD production and stocks

    Palms and trees resist extreme drought in Amazon forests with shallow water tables

    Get PDF
    1. The intensity and frequency of severe droughts in the Amazon region has increase in recent decades. These extreme events are associated with changes in forest dynamics, biomass and floristic composition. However, most studies of drought response have focused on upland forests with deep water tables, which may be especially sensitive to drought. Palms, which tend to dominate the less well‐drained soils, have also been neglected. The relative neglect of shallow water tables and palms is a significant concern for our understanding of tropical drought impacts, especially as one third of Amazon forests grow on shallow water tables (<5m deep). 2. We evaluated the drought response of palms and trees in forests distributed over a 600 km transect in central‐southern Amazonia, where the landscape is dominated by shallow water table forests. We compared vegetation dynamics before and following the 2015–16 El Nino drought, the hottest and driest on record for the region (−214 mm of cumulative water deficit). 3. We observed no change in stand mortality rates and no biomass loss in response to drought in these forests. Instead, we observed an increase in recruitment rates, which doubled to 6.78% y‐1 ± 4.40 (mean ± SD) during 2015–16 for palms and increased by half for trees (to 2.92% y‐1 ± 1.21), compared to rates in the pre‐El‐Nino interval. Within these shallow water table forests, mortality and recruitment rates varied as a function of climatic drought intensity and water table depth for both palms and trees, with mortality being greatest in climatically and hydrologically wetter environments and recruitment greatest in drier environments. Across our transect there was a significant increase over time in tree biomass. 4. Synthesis: Our results indicate that forests growing over shallow water tables – relatively under‐studied vegetation that nonetheless occupies one‐third of Amazon forests ‐ are remarkably resistant to drought. These findings are consistent with the hypothesis that local hydrology and its interactions with climate strongly constrain forest drought effects, and has implications for climate change feedbacks. This work enhances our understanding of integrated drought effects on tropical forest dynamics and highlights the importance of incorporating neglected forest types into both the modeling of forest climate responses and into public decisions about priorities for conservation

    Climatic predictors of species distributions neglect biophysiologically meaningful variables

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record.Aim: Species distribution models (SDMs) have played a pivotal role in predicting how species might respond to climate change. To generate reliable and realistic predictions from these models requires the use of climate variables that adequately capture physiological responses of species to climate and therefore provide a proximal link between climate and their distributions. Here, we examine whether the climate variables used in plant SDMs are different from those known to influence directly plant physiology. Location: Global. Methods: We carry out an extensive, systematic review of the climate variables used to model the distributions of plant species and provide comparison to the climate variables identified as important in the plant physiology literature. We calculate the top ten SDM and physiology variables at 2.5 degree spatial resolution for the globe and use principal component analyses and multiple regression to assess similarity between the climatic variation described by both variable sets. Results: We find that the most commonly used SDM variables do not reflect the most important physiological variables and differ in two main ways: (i) SDM variables rely on seasonal or annual rainfall as simple proxies of water available to plants and neglect more direct measures such as soil water content; and (ii) SDM variables are typically averaged across seasons or years and overlook the importance of climatic events within the critical growth period of plants. We identify notable differences in their spatial gradients globally and show where distal variables may be less reliable proxies for the variables to which species are known to respond. Main conclusions: There is a growing need for the development of accessible, fine-resolution global climate surfaces of physiological variables. This would provide a means to improve the reliability of future range predictions from SDMs and support efforts to conserve biodiversity in a changing climate

    The Brazilian Program for Biodiversity Research (PPBio) Information System.

    Get PDF
    The database of the Brazilian Program for Biodiversity Research (PPBio; GIVD ID SA-BR-001) includes data on the environment and biological groups such as plants. It is organized by site, which is usually a grid with 10 to 72 uniformly-distributed plots, and has already surveyed 1,638 relevés across different Brazilian ecosystems. The sampling design is based on the RAPELD system to allow integration of data from diverse taxa and ecosystem processes. RAPELD is a spatially-explicit sampling scheme to monitor biodiversity in long-term ecological research sites and during rapid appraisals of biodiversity that has attracted support from many management agencies, which are using it as their long-term monitoring system. Vegetation surveys include measurements of cover, biomass and number of individuals from woody and herbaceous vascular plants, along with environmental data. We have recently migrated to a metadata catalog and data repository which allows searching for specific groups across all sites. All RAPELD data have been collected since 2001, though the site also allows data from other long-term plots to be archived as associated projects

    The Brazilian Program for Biodiversity Research (PPBio) Information System.

    Get PDF
    The database of the Brazilian Program for Biodiversity Research (PPBio; GIVD ID SA-BR-001) includes data on the environment and biological groups such as plants. It is organized by site, which is usually a grid with 10 to 72 uniformly-distributed plots, and has already surveyed 1,638 relevés across different Brazilian ecosystems. The sampling design is based on the RAPELD system to allow integration of data from diverse taxa and ecosystem processes. RAPELD is a spatially-explicit sampling scheme to monitor biodiversity in long-term ecological research sites and during rapid appraisals of biodiversity that has attracted support from many management agencies, which are using it as their long-term monitoring system. Vegetation surveys include measurements of cover, biomass and number of individuals from woody and herbaceous vascular plants, along with environmental data. We have recently migrated to a metadata catalog and data repository which allows searching for specific groups across all sites. All RAPELD data have been collected since 2001, though the site also allows data from other long-term plots to be archived as associated projects
    • 

    corecore